Manganese exposure during early larval stages of C. elegans causes learning disability in the adult stage
Biochemical and Biophysical Research Communications, ISSN: 0006-291X, Vol: 568, Page: 89-94
2021
- 4Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures33
- Readers33
- 32
Article Description
Manganese (Mn), even though an essential trace element, causes neurotoxicity in excess. In adults, over-exposure to Mn causes clinical manifestations, including dystonia, progressive bradykinesia, disturbance of gait, slurring, and stuttering of speech. These symptoms are mainly because of Mn-associated oxidative stress and degeneration of dopamine neurons in the central nervous system. Children with excessive Mn exposure often show learning disabilities but rarely show symptoms associated with dopaminergic neuron dysfunction. It is unclear why Mn exposure shows distinctive clinical outcomes in developing brains versus adult brains. Studies on nematode C. elegans have demonstrated that it is an excellent model to elucidate Mn-associated toxicity in the nervous system. In this study, we chronically exposed Mn to L1 larval stage of the worms to understand the effects on dopamine neurons and cognitive development. The worms showed modified behavior to exogenous dopamine compared to the control. The dopamine neurons showed resistance to neurodegeneration on repeated Mn exposure during the adult stage. As observed in mammalian systems, these worms showed significantly low olfactory adaptive learning and memory. This study shows that C. elegans alters adaptive developmental plasticity during Mn overexposure, modifying its sensitivity towards the metal ion and leads to remodeling in its innate learning behavior.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006291X21009955; http://dx.doi.org/10.1016/j.bbrc.2021.06.073; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108890106&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34198165; https://linkinghub.elsevier.com/retrieve/pii/S0006291X21009955; https://dx.doi.org/10.1016/j.bbrc.2021.06.073
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know