Adipose-derived stem/stromal cells with heparin-enhanced anti-inflammatory and antifibrotic effects mitigate induced pulmonary fibrosis in mice
Biochemical and Biophysical Research Communications, ISSN: 0006-291X, Vol: 629, Page: 135-141
2022
- 4Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- CrossRef2
- Captures9
- Readers9
Article Description
Interstitial lung disease (ILD) is a life-threatening pathological condition that causes respiratory failure and often presents as pulmonary fibrosis. Although it is treated using immunosuppressive and antifibrotic agents, the beneficial effects of these agents remain limited. Thus, the development of new therapeutic strategies for lung fibrosis is crucial. Mesenchymal stem/stromal cells (MSCs) have multilineage differentiation potential; additionally, they have anti-inflammatory and antifibrotic effects as well as the ability to modulate the immune response and modify the microenvironment at the site of engraftment. Numerous adipose-derived MSCs (ASCs) are present in the adipose tissue. Heparin and low-molecular-weight heparin (LMWH) mediate the secretion of several cytokines and growth factors with cell migratory and antifibrotic effects. This study aimed to confirm the therapeutic effect of LMWH-activated ASCs on ILD. Mouse ASCs (mASCs) were cultured in an LMWH-supplemented medium. LMWH significantly increased the number of mASC and enhanced their migratory, anti-inflammatory, and antifibrotic effects. Furthermore, mice with bleomycin-induced pulmonary fibrosis were intravenously administered LMWH-activated mASCs. The relative mRNA expression of inflammation-related genes in ILD lungs was significantly lower in the treatment group than in the pathological model group. Our findings suggest that LMWH-activated mASC administration reduces lung fibrosis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006291X22012414; http://dx.doi.org/10.1016/j.bbrc.2022.08.096; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138019741&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36116376; https://linkinghub.elsevier.com/retrieve/pii/S0006291X22012414; https://dx.doi.org/10.1016/j.bbrc.2022.08.096
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know