CUG repeat RNA-dependent proteasomal degradation of MBNL1 in a cellular model of myotonic dystrophy type 1
Biochemical and Biophysical Research Communications, ISSN: 0006-291X, Vol: 733, Page: 150729
2024
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a non-coding CTG repeat in DMPK. CUG-repeat-containing transcripts sequester the splicing regulator MBNL1 into nuclear RNA foci, causing aberrant splicing of many genes. Although the mislocalization of MBNL1 represents a causal event in DM1 pathogenesis, the effect of CUG repeat RNA on the protein level of MBNL1 remains unclear. Using a DM1 model cell line, we found that CUG repeat RNA caused a significant decrease in the protein, but not mRNA levels, of MBNL1. As CUG repeats did not decrease MBNL1 translation, we investigated protein degradation pathways. Although autophagy-related reagents induced little change, proteasome inhibitors partially recovered MBNL1 protein expression levels under conditions of CUG repeat expression and induced a slight, but significant, reversal of splicing dysregulation. MBNL1 was detected in the polyubiquitinated protein fraction, but MBNL1 polyubiquitination was not detected. Moreover, inhibition of the ubiquitin-activating enzyme E1 did not increase MBNL1 levels, suggesting that MBNL1 is a substrate of polyubiquitin-independent proteasomal degradation. These results suggest that CUG-repeat-induced proteasomal degradation partially contributes to the functional decline of MBNL1.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006291X24012658; http://dx.doi.org/10.1016/j.bbrc.2024.150729; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85204603653&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39326259; https://linkinghub.elsevier.com/retrieve/pii/S0006291X24012658
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know