HIF-1α stabilization inhibits Japanese encephalitis virus propagation and neurotoxicity via autophagy pathways
Biochemical and Biophysical Research Communications, ISSN: 0006-291X, Vol: 736, Page: 150853
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Japanese encephalitis (JE) is a widespread flavivirus that induces brain inflammation and affects the central nervous system (CNS). Deferoxamine, an iron chelator, has shown promising results in stabilizing HIF-1α, a protein that improves hypoxic conditions, offers protective effects against neurological, and neurodegenerative diseases. This study aimed to assess the impact of HIF-1α stabilization during JEV infection using SH-SY5Y neuroblastoma cell lines as a model. Our findings demonstrated that deferoxamine treatment increased HIF-1α protein levels, leading to a reduction in JEV propagation. Moreover, RT-PCR analysis revealed that deferoxamine ameliorated JEV-induced neuroinflammation and neurotoxicity. We proved that inducing HIF-1α is essential for having an impact of deferoxamine against JEV-mediated neurotoxicity. Thus, our findings offer a potential therapeutic approach to mitigate the detrimental effects of JEV infection on neuronal cells. Further investigations also demonstrated that deferoxamine could reverse JEV-induced autophagy inhibition by stabilizing HIF-1α, which plays a crucial role in mitigating neuronal cell damage and neuroinflammation. Based on our data, HIF-1α stabilization emerges as a vital factor against JEV infection in the neurons, highlighting deferoxamine as a promising and innovative target for developing anti-JEV agents.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006291X24013895; http://dx.doi.org/10.1016/j.bbrc.2024.150853; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207129670&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39454305; https://linkinghub.elsevier.com/retrieve/pii/S0006291X24013895
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know