Umbilical mesenchymal stem cell-derived exosomes promote spinal cord functional recovery through the miR-146b/TLR4 -mediated NF-κB p65 signaling pathway in rats
Biochemistry and Biophysics Reports, ISSN: 2405-5808, Vol: 35, Page: 101497
2023
- 4Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Spinal cord injury (SCI) is an incurable central nervous system impairment that lack of efficient treatment. Exosomes derived from mesenchymal stem cells (MSCs) are widely applied in disease treatment. This work aimed to determine the promising therapeutic effects of MSC-derived exosomal miRNA146b on SCI. A rat spinal cord injury (SCI) model and lipopolysaccharide (LPS)-induced PC12 cell model were established. Exosomes were extracted from human umbilical cord mesenchymal stem cells (hUCMSCs). The identification of exosomes was performed by using transmission electronic microscope (TEM) and nanoparticle tracking analysis (NTA). Hematoxylin and eosin (HE) staining and TUNEL assay were performed to assess tissue damage and apoptosis, respectively. ELISA was performed to detect levels of inflammatory cytokines. Cell viability was checked by cell counting kit 8 (CCK-8). Gene expression and protein levels were detected by qPCR and western blotting assay. The interaction between miR-146 b and Toll-like receptor 4 (TLR4) was assessed by luciferase reporter gene assay. The hUCMSC-derived exosomes could notably alleviate the spinal cord injury and cell apoptosis. The exosomal miR-146 b treatment suppressed the release of IL-1 β, IL-6, and TNFα. The miR-146 b suppressed the expression of TLR4, directly interact with the 3′-untranslated region (3′UTR) of TLR4, and inactivated the nuclear factor κB (NF-κB) signaling. The hUCMSCs-derived exosomal miR-146 b protects neurons from spinal cord injury through targeting the TLR4 and inactivating the NF-κB signaling. Our findings supported the application of hUCMSCs-derived exosomal miR-146 b for the protection of SCI.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S240558082300078X; http://dx.doi.org/10.1016/j.bbrep.2023.101497; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85165136093&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37534324; https://linkinghub.elsevier.com/retrieve/pii/S240558082300078X; https://dx.doi.org/10.1016/j.bbrep.2023.101497
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know