Protein 4.2 Komatsu (D175Y) associated with the lack of interaction with ankyrin in human red blood cells
Blood Cells, Molecules, and Diseases, ISSN: 1079-9796, Vol: 38, Issue: 3, Page: 221-228
2007
- 2Citations
- 42Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef1
- Captures42
- Readers42
- 35
Article Description
Membrane skeletal proteins play an important role in regulating the shape and function of the human red blood cell. Protein 4.2 interacts with cytoplasmic domain of band 3 (CDB3) and ankyrin for association between the skeleton network and the membrane. The deficiency of protein 4.2 may result in hereditary spherocytosis. In order to explore the molecular mechanism of the linkage of protein 4.2 Komatsu (D175Y) and protein 4.2 Nippon (A142T) with hereditary spherocytosis, a series of protein 4.2-derived mutants were designed and expressed in Escherichia coli. Their interactions with ankyrin and CDB3 were investigated by Far Western blot and pull-down assay in vitro. The results showed that the mutant D175Y of protein 4.2 cannot interact with ankyrin while mutant A142T, just like normal protein 4.2, can bind to ankyrin directly and can associate with CDB3 in the presence of ankyrin. Based on comparing the binding abilities of the protein 4.2 mutants D175F, D175A, D175K and D175Y with ankyrin and CDB3, we suggested that defective binding of protein 4.2 Komatsu to ankyrin is resulted from the charge effect of amino acid residue 175 substitution (D → Y), which leads to significant structural change in protein 4.2 function domain.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1079979606005420; http://dx.doi.org/10.1016/j.bcmd.2006.11.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34047147516&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/17188914; https://linkinghub.elsevier.com/retrieve/pii/S1079979606005420; https://dx.doi.org/10.1016/j.bcmd.2006.11.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know