Surface display of glycosyltransferase PgM8 and whole-cell catalysis for efficient Rebaudioside D biosynthesis in Pichia pastoris
Biochemical Engineering Journal, ISSN: 1369-703X, Vol: 212, Page: 109522
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Rebaudioside D (Reb D) is a zero-calorie, high-intensity sweetener favored for its superior taste profile compared to other steviol glycosides such as Stevioside (ST) and Rebaudioside A (Reb A). However, Reb D naturally accounts for only about 0.5% of the dry leaf mass of stevia, creating a production challenge. To address this, a mutated glycosyltransferase PgUGT (M8) (named PgM8) from Panax ginseng and sucrose synthase mbSUS from Vigna radiata were co-expressed in Pichia pastoris. We enhanced the system by fusing PgM8 with the GPI-anchored protein GCW61 for cell surface display, achieving enzyme immobilization. Optimizing the PgM8 copy number increased catalytic activity by 82.56%. This innovation enabled continuous whole-cell catalysis for Reb D synthesis, eliminating the need for cell disruption and purification while improving strain reusability. The yield of Reb D reached 48.2 g/L (42.7 mM) in a 50 mL batch within 33 hours, suggesting that this whole-cell catalyst has great potential for large-scale industrial production.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know