Contact guidance induced organization of extracellular matrix
Biomaterials, ISSN: 0142-9612, Vol: 25, Issue: 17, Page: 3631-3638
2004
- 102Citations
- 82Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations102
- Citation Indexes102
- 102
- CrossRef91
- Captures82
- Readers82
- 82
Article Description
The scarring response following injury to the central nervous system disrupts the anatomical organization of nervous tissue posing a barrier to the regeneration of axons. In the present study, using materials with nanometer level surface features we examined whether matrix organization could be controlled by engineering meningeal cell asymmetry. Following 5 days in culture, the organization of meningeal cells along with their cytoskeletal elements and extracellular matrix proteins was evaluated. Meningeal cell morphology was markedly affected by nanometer level substrate topography. Cell alignment increased with increasing surface roughness. In addition, linear arrays of extracellular matrix were expressed that appeared related to cellular orientation. When cultured on substrates with topographical features of less than 10 nm neither cells nor their extracellular matrix showed organizational asymmetry. However, as oriented surface roughness increased, cellular and matrix asymmetrical organization became more pronounced reaching a threshold at 345 nm. These results suggest that biomaterial surface topography or other methods of altering the orientation of cells may be used to engineer orientation into the secreted extracellular matrix and as such may be a potential strategy for developing organized cell-derived matrix as a bridging material for nerve repair or other regenerative applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0142961203009566; http://dx.doi.org/10.1016/j.biomaterials.2003.10.043; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=1542268864&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/15020137; https://linkinghub.elsevier.com/retrieve/pii/S0142961203009566; https://dx.doi.org/10.1016/j.biomaterials.2003.10.043
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know