BMP10 as a potent inducer of trophoblast differentiation in human embryonic and induced pluripotent stem cells
Biomaterials, ISSN: 0142-9612, Vol: 34, Issue: 38, Page: 9789-9802
2013
- 40Citations
- 48Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations40
- Citation Indexes40
- 40
- CrossRef39
- Captures48
- Readers48
- 48
Article Description
Bone morphogenetic proteins (BMPs) are known to induce diverse differentiation fates in human embryonic stem cells (hESCs). In the present study, we compared the potency at which BMP5, BMP10 and BMP13, which are members of distinct BMP subgroups due to differences in sequential and structural homology, induce differentiation in hESCs and human induced pluripotent stem cells (hiPSCs). We observed, in agreement with previous BMP4 model studies, that all ligands induced differentiation to the trophoblast lineage in the absence of bFGF. However, distinct BMPs exerted differences in the kinetics of induced differentiation, with BMP10 being the most potent. hiPSCs and hESCs shared comparable expression patterns of BMP type-I and -II receptor subtypes, which might explain conserved properties with respect to ligand potency and activation of SMAD-dependent (via SMAD1/5/8) and -independent (via MAPK p38) signal transduction pathways. The tested BMPs had distinct and also conserved target genes such as CDX2, DLX3, DLX5, GATA2, GATA3, HAND1, ID2, MSX2 and TFAP2A, known to be associated with the emergence of trophoblast cells. hESCs induced expression of the BMP antagonist NOGGIN as a protection mechanism to constrict extensive BMP action. Unlike BMP4, BMP10 has been shown to be resistant to NOGGIN-induced inhibition which in part might explain its potency. BMPs, in particular BMP4, are commonly used cytokines in differentiation protocols to generate diverse mesoderm- and endoderm-derivates from human pluripotent stem cells. Our study has identified BMP10, a cardiac-specific protein, as a superior alternative to BMP4 for inducing trophoblast differentiation in human pluripotent stem cells.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0142961213010624; http://dx.doi.org/10.1016/j.biomaterials.2013.08.084; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84885387161&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/24070570; https://linkinghub.elsevier.com/retrieve/pii/S0142961213010624; https://dx.doi.org/10.1016/j.biomaterials.2013.08.084
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know