Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach
Biomaterials, ISSN: 0142-9612, Vol: 35, Issue: 7, Page: 2140-2148
2014
- 38Citations
- 71Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes38
- 38
- CrossRef33
- Captures71
- Readers71
- 71
Article Description
Given the limitations of current surgical approaches to treat articular cartilage injuries, tissue engineering (TE) approaches have been aggressively pursued. Despite reproduction of key mechanical attributes of native tissue, the ability of TE cartilage constructs to integrate with native tissue must also be optimized for clinical success. In this paper, we propose a “trajectory-based” tissue engineering (TB-TE) approach, based on the hypothesis that time-dependent increases in construct maturation in-vitro prior to implantation (i.e. positive rates) may provide a reliable predictor of in-vivo success. As an example TE system, we utilized hyaluronic acid hydrogels laden with mesenchymal stem cells. We first modeled the maturation of these constructs in-vitro to capture time-dependent changes. We then performed a sensitivity analysis of the model to optimize the timing and amount of data collection. Finally, we showed that integration to cartilage in-vitro is not correlated to the maturation state of TE constructs, but rather their maturation rate, providing a proof-of-concept for the use of TB-TE to enhance treatment outcomes following cartilage injury. This new approach challenges the traditional TE paradigm of matching only native state parameters of maturity and emphasizes the importance of also establishing an in-vitro trajectory in constructs in order to improve the chance of in-vivo success.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0142961213013847; http://dx.doi.org/10.1016/j.biomaterials.2013.11.031; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84891372788&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/24314553; https://linkinghub.elsevier.com/retrieve/pii/S0142961213013847; https://dx.doi.org/10.1016/j.biomaterials.2013.11.031
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know