Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes
Biomaterials, ISSN: 0142-9612, Vol: 233, Page: 119729
2020
- 87Citations
- 78Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations87
- Citation Indexes87
- 87
- CrossRef14
- Captures78
- Readers78
- 78
Article Description
Multiple ophthalmic pathologies, such as retinal detachment and diabetic retinopathy, require the removal and replacement of the vitreous humor. Clinical tamponades such as silicone oil and fluorinated gases are utilized but limited due to complications and toxicity. Therefore, there is a need for biocompatible, stable, vitreous humor substitutes. In this study, enzymatically crosslinked silk-hyaluronic acid (HA) hydrogels formed using horseradish peroxidase and H 2 O 2 were characterized for use as vitreous humor substitutes. The composite network structure was characterized with dynamic light scattering. In addition, the rheological, optical, and swelling properties of hydrogels with varying silk to HA ratios and crosslinking densities controlled via H 2 O 2 were determined over time. Hydrogels had refractive indexes of 1.336 and were clear with 75–91% light transmission. Hydrogel shear storage modulus ranged between ~6 and 240 Pa where increased H 2 O 2 increased the modulus. After 1 month of aging, there were no changes in modulus for hydrogels with lower silk ratios, while those with higher silk ratios exhibited a significant increase in modulus. Decreasing H 2 O 2 concentration in the reactions led to increased hydrogel volume during swelling, with higher silk ratios returning to their original size after 15 days. Dynamic light scattering results show three diffusive modes, revealing the possible structures of the hydrogel composite and are consistent with the mechanical properties and swelling results. The normalized intraocular pressure of ex vivo porcine eyes after injecting hydrogels were comparable with those treated with silicone oil showing the potential clinical utility of the hydrogels as vitreous substitutes. The versatility of the silk-HA hydrogel system, the tunable swelling properties, and the stability of hydrogels with lower silk ratios show the benefit of utilizing silk-HA hydrogels as vitreous substitutes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0142961219308476; http://dx.doi.org/10.1016/j.biomaterials.2019.119729; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85077491333&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31927250; https://linkinghub.elsevier.com/retrieve/pii/S0142961219308476; https://dx.doi.org/10.1016/j.biomaterials.2019.119729
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know