Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent toll-like receptors
Biomaterials, ISSN: 0142-9612, Vol: 275, Page: 120914
2021
- 54Citations
- 38Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations54
- Citation Indexes54
- 54
- CrossRef20
- Captures38
- Readers38
- 38
- Mentions1
- News Mentions1
- 1
Most Recent News
Researchers discover how cowpea mosaic plant virus activates immune system against cancer
Cowpea mosaic virus, when injected into cancerous tumors, stimulates the immune system to attack and often eliminate the tumor. In a new study, immunology researchers in Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center, in collaboration with researchers at the University of California San Diego Jacobs School of Engineering, characterize the previously unidentified pathways through
Article Description
Cowpea mosaic virus (CPMV), a non-enveloped plant virus, and empty CPMV (eCPMV), a virus-like particle (VLP) composed of CPMV capsid without nucleic acids, are potent in situ cancer vaccines when administered intratumorally (I.T.). However, it is unclear how immune cells recognize these nanoparticles and why they are immunogenic, which was investigated in this study. CPMV generated stronger selective induction of cytokines and chemokines in naïve mouse splenocytes and exhibited more potent anti-tumor efficacy than eCPMV. MyD88 is required for both CPMV- and eCPMV-elicited immune responses. Screening with human embryonic kidney (HEK)-293 cell toll-like receptor (TLR) reporter assays along with experiments in corresponding TLR−/− mice indicated CPMV and eCPMV capsids are recognized by MyD88-dependent TLR2 and TLR4. CPMV, but not eCPMV, is additionally recognized by TLR7. Secretion of type I interferons (IFNs), which requires the interaction between TLR7 and encapsulated single-stranded RNAs (ssRNAs), is critical to CPMV's better efficacy. The same recognition mechanisms are also functional in human peripheral blood mononuclear cells (PBMCs). Overall, these findings link CPMV immunotherapy efficacy with molecular recognition, provide rationale for how to develop more potent viral particles, accentuate the value of multi-TLR agonists as in situ cancer vaccines, and highlight the functional importance of type I IFNs for in situ vaccination.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0142961221002702; http://dx.doi.org/10.1016/j.biomaterials.2021.120914; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107673223&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34126409; https://linkinghub.elsevier.com/retrieve/pii/S0142961221002702; https://dx.doi.org/10.1016/j.biomaterials.2021.120914
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know