Synthetic flavonoid derivatives targeting the glycogen phosphorylase inhibitor site: QM/MM-PBSA motivated synthesis of substituted 5,7-dihydroxyflavones, crystallography, in vitro kinetics and ex-vivo cellular experiments reveal novel potent inhibitors
Bioorganic Chemistry, ISSN: 0045-2068, Vol: 102, Page: 104003
2020
- 16Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef1
- Captures14
- Readers14
- 14
Article Description
Glycogen phosphorylase (GP) is an important target for the development of new anti-hyperglycaemic agents. Flavonoids are novel inhibitors of GP, but their mode of action is unspecific in terms of the GP binding sites involved. Towards design of synthetic flavonoid analogues acting specifically at the inhibitor site and to exploit the site’s hydrophobic pocket, chrysin has been employed as a lead compound for the in silico screening of 1169 new analogues with different B ring substitutions. QM/MM-PBSA binding free energy calculations guided the final selection of eight compounds, subsequently synthesised using a Baker-Venkataraman rearrangement-cyclisation approach. Kinetics experiments against rabbit muscle GPa and GPb together with human liver GPa, revealed three of these compounds ( 11, 20 and 43 ) among the most potent that bind at the site ( Ki s < 4 µM for all three isoforms), and more potent than previously reported natural flavonoid inhibitors. Multiple inhibition studies revealed binding exclusively at the inhibitor site. The binding is synergistic with glucose suggesting that inhibition could be regulated by blood glucose levels and would decrease as normoglycaemia is achieved. Compound 43 was an effective inhibitor of glycogenolysis in hepatocytes ( IC50 = 70 µM), further promoting these compounds for optimization of their drug-like potential. X-ray crystallography studies revealed the B-ring interactions responsible for the observed potencies.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045206820313006; http://dx.doi.org/10.1016/j.bioorg.2020.104003; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85089093926&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32771768; https://linkinghub.elsevier.com/retrieve/pii/S0045206820313006; https://dx.doi.org/10.1016/j.bioorg.2020.104003
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know