Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept
Bioresource Technology, ISSN: 0960-8524, Vol: 102, Issue: 2, Page: 1433-1439
2011
- 100Citations
- 156Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations100
- Citation Indexes100
- 100
- CrossRef77
- Captures156
- Readers156
- 156
Article Description
The present study investigated the utilization of the whole rapeseed plant (seed and straw) for multi-biofuels production in a biorefinery concept. Results showed that bioethanol production from straw was technically feasible with ethanol yield of 0.15 g ethanol/g dry straw after combined alkaline peroxide and stream pretreatment. The byproducts (rapeseed cake, glycerol, hydrolysate and stillage) were evaluated for hydrogen and methane production. In batch experiments, the energy yields from each feedstock for, either methane production alone or for both hydrogen and methane, were similar. However, results from continuous experiments demonstrated that the two-stage hydrogen and methane fermentation process could work stably at organic loading rate up to 4.5 gVS/(L d), while the single-stage methane production process failed. The energy recovery efficiency from rapeseed plant increased from 20% in the conventional biodiesel process to 60% in the biorefinery concept, by utilization of the whole rapeseed plant for biodiesel, bioethanol, biohydrogen and methane production.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852410015841; http://dx.doi.org/10.1016/j.biortech.2010.09.071; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78650713156&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/20933399; https://linkinghub.elsevier.com/retrieve/pii/S0960852410015841; https://dx.doi.org/10.1016/j.biortech.2010.09.071
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know