A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability
Bioresource Technology, ISSN: 0960-8524, Vol: 241, Page: 743-749
2017
- 22Citations
- 41Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- 22
- CrossRef13
- Captures41
- Readers41
- 41
Article Description
Exoelectrogenic bacteria (EEB) can transfer electrons to extracellular electron acceptors and have wide applications in environmental bioremediation and bioenergy generation. Thus, methods for effectively probing the exoelectrogenic ability of EEB are highly desirable. In this work, a simple but efficient photometric assay based on the extracellular reduction of high polar dyes was developed to evaluate the microbial exoelectrogenic ability. Methyl orange were proven to be used as a probe for evaluating the exoelectrogenic ability of EEB. Through monitoring the extracellular dye decolorization under anaerobic conditions, this plate-based photometric assay could rapidly measure the exoelectrogenic ability of various EEB. This approach was also able to evaluate the exoelectrogenic capacity of Shewanella oneidensis MR-1 wild-type strain and its Mtr mutants. Furthermore, the exoelectrogenic ability of mixed cultures in microbial fuel cells was correlated with the extracellular dye decolorization. Thus, this work is useful for the practical implementation of microbial exoelectrogenic ability evaluation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852417309008; http://dx.doi.org/10.1016/j.biortech.2017.06.013; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85020787138&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/28628978; https://linkinghub.elsevier.com/retrieve/pii/S0960852417309008; https://dx.doi.org/10.1016/j.biortech.2017.06.013
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know