Do microbial communities in an anaerobic bioreactor change with continuous feeding sludge into a full-scale anaerobic digestion system?
Bioresource Technology, ISSN: 0960-8524, Vol: 249, Page: 89-98
2018
- 49Citations
- 108Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations49
- Citation Indexes49
- 49
- CrossRef38
- Captures108
- Readers108
- 108
Article Description
Microbial communities of sludge samples from a full-scale anaerobic digestion (AD) fed with primary sludge (PS) and excess sludge (ES) were analyzed using qPCR and MiSeq. The results showed that the microbial composition of digested sludge remained relatively stable but was partially changed by microbial immigration from feeding sludge. The dominant archaea in the digested sludge were largely the same as those in the feeding sludge, but their abundances differed markedly. The dominant fungal genera in the digested sludge were different from those in PS but were similar to those in ES. Various differences in bacterial community differences between digested sludge and PS/ES were observed. Notably, this study is the first to suggest Verrucomicrobia is the predominant bacterial phylum in the digested sludge, and that numerous unreported microorganisms belonging to the order LD1-PB3 existed in this AD system and potentially played roles in the processes of hydrolysis, fermentation, and acetogenesis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852417317674; http://dx.doi.org/10.1016/j.biortech.2017.09.191; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85042651846&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/29040865; https://linkinghub.elsevier.com/retrieve/pii/S0960852417317674; https://dx.doi.org/10.1016/j.biortech.2017.09.191
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know