Effect of complexing agents on phosphorus release from chemical-enhanced phosphorus removal sludge during anaerobic fermentation
Bioresource Technology, ISSN: 0960-8524, Vol: 301, Page: 122745
2020
- 52Citations
- 39Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Phosphorus (P) release from sludge containing phosphate precipitates (FePs or AlPs) as well as the anaerobic performance with the addition of complexing agents (citric, tartaric and EDTA) during ambient anaerobic fermentation process were investigated. Results showed that citrate addition was the most effective method to enhance P release from inorganic phosphate by chelation and promote volatile fatty acids (VFAs) production simultaneously during anaerobic fermentation. Equimolar citrate addition with chemical precipitates was the optimal dosage. Microbial analysis revealed that EDTA has the strongest inhibitory effect on microbial activity and community structure, while citrate was more effective in enhancing important acidifying microorganisms than tartrate and EDTA. Therefore, citrate addition can be regarded as an alternative and promising method to recover P and carbon source from sludge containing chemical precipitates. These important discoveries will help to enrich P recovery path from sludge produced in the chemical-enhanced P removal treatment processes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852420300146; http://dx.doi.org/10.1016/j.biortech.2020.122745; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85077924947&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31954968; https://linkinghub.elsevier.com/retrieve/pii/S0960852420300146; https://dx.doi.org/10.1016/j.biortech.2020.122745
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know