Efficient degradation of naproxen in a three dimensional biofilm electrode magnetism reactor (3DBEMR): Removal performance and microbial community
Bioresource Technology, ISSN: 0960-8524, Vol: 346, Page: 126653
2022
- 5Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef4
- Captures13
- Readers13
- 13
Article Description
A three-dimensional biofilm electrode magnetism reactor (3DBEMR) was constructed to removal naproxen (NPX). This study evaluated 3DBEMR performance in removal of refractory NPX, while also discussing the effect of the electro-magnetic superposition on microbial community by high throughput sequencing. Results indicated that 3DBEMR’s average removal rate for NPX stood at 88.36%, representing an increase by 75.24%, 65.03% and 12.36%, respectively, compared to 3DBR (Three-Dimensional Biofilm Reactor), 3DBMR (Three-Dimensional Biofilm Magnetism Reactor) and 3DBER (Three-Dimensional Biofilm Electrode Reactor). This was attributed to the influence of electro-magnetic adsorption, electro-oxidaton/catalysis, and electro-magnetic biodegradation. Another major contributing factor to NPX removal was the presence in 3DBEMR of high-abundance genera such as Rhodobacter, Porphyrobacter, Methyloversatilis, Sphingopyxis,Bosea, Singulisphaera, Sphingomonas. Therefore, the 3DBEMR was successfully demonstrated to be a flexible and effective technique in NPX degradation, which would help to better understand the effect of superposition of electric and magnetic fields on microbial community.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852421019957; http://dx.doi.org/10.1016/j.biortech.2021.126653; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122307553&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34979277; https://linkinghub.elsevier.com/retrieve/pii/S0960852421019957; https://dx.doi.org/10.1016/j.biortech.2021.126653
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know