Alkalinity regulation in a sulfur autotrophic denitrifying filter substantially reduced total dissolved solids and sulfate in effluent
Bioresource Technology, ISSN: 0960-8524, Vol: 348, Page: 126751
2022
- 22Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- 22
- CrossRef11
- Captures10
- Readers10
- 10
Article Description
Sulfur autotrophic denitrification (SAD) filters are considered a promising technology due to their stable and excellent performance in nitrogen removal, affordable costs, and operational advantages. In this work, a novel operational strategy that employed sodium bicarbonate as an alkalinity source in the autotrophic denitrification filter (S-SAD) was established. With the sufficient supply of alkalinity, the S-SAD reached an excellent denitrification performance (98.01%±0.43%) with a nitrate concentration of 10 mg/L in influent and hydraulic retention time of 3 hrs. The total dissolved solids increment and sulfate concentration in effluent were significantly reduced by one-third, compared with that of the traditional SAD process under the same conditions. The analysis of microbial community indicated that Thiobacilhus, typical species with the functions of simultaneous sulfur oxidation and denitrification, was evidently enriched in the S-SAD. Thus, this present work demonstrated a feasible, relatively cost-effective and environmentally friendly approach to operate SAD towards further application.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852422000803; http://dx.doi.org/10.1016/j.biortech.2022.126751; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85123635040&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35066131; https://linkinghub.elsevier.com/retrieve/pii/S0960852422000803; https://dx.doi.org/10.1016/j.biortech.2022.126751
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know