Pretreatment of rice straw by newly isolated fungal consortium enhanced lignocellulose degradation and humification during composting
Bioresource Technology, ISSN: 0960-8524, Vol: 354, Page: 127150
2022
- 58Citations
- 55Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations58
- Citation Indexes58
- CrossRef58
- 57
- Captures55
- Readers55
- 55
Article Description
The slow decomposition rate of the reluctant structure of lignocellulose in agricultural waste is the great limitation of composting processes, which can be averted by pretreatment-strategies. This study focused on the impacts of pretreating rice straw using a consortium of newly isolated fungal species on lignocellulose degradation and humic substances during composting. Fungal pretreatment had a significant impact on lignocellulose degradation (84%) of rice straw by producing higher lignocellulytic enzymes than chemical pretreatments (79%) or the control (61%). The compost with fungal pretreated rice straw (FPT) showed significantly high composting temperature in the late mesophilic stage, which enhanced the degradation of lignocellulose. The fluorescence excitation emission spectroscopy revealed that significantly more humic acid-like compounds were formed in FPT. These findings suggest that fungal pretreatment is a feasible method to accelerate straw degradation and humification.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852422004795; http://dx.doi.org/10.1016/j.biortech.2022.127150; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130004660&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35429593; https://linkinghub.elsevier.com/retrieve/pii/S0960852422004795; https://dx.doi.org/10.1016/j.biortech.2022.127150
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know