Efficient conversion of hemicellulose into 2, 3-butanediol by engineered psychrotrophic Raoultella terrigena : mechanism and efficiency
Bioresource Technology, ISSN: 0960-8524, Vol: 359, Page: 127453
2022
- 22Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- 22
- CrossRef21
- Captures6
- Readers6
Article Description
Low-temperature biorefineries inhibit the multiplication of undesired microorganisms, improve product purity and reduce economic costs. Herein, to improve the 2,3-butanediol (2,3-BD) bioconversion efficiency from hemicellulose, a psychrotrophic hemicellulose-degrading strain Raoultella terrigena HC6 with high β-xylosidase activity 1520 U/mL was isolated and genetically modified. Xylan (hemicellulose replacement) was depolymerized into xylooligosaccharides (XOS) and xylose by HC6, which were further converted into 2,3-BD. Transcriptomic analysis revealed that β-xylosidase gene ( xynB ) and xylose isomerase gene ( xylA ), which are beneficial for increasing the carbon flux from xylan to 2,3-BD, were significantly upregulated 56.9-fold and 234-fold, respectively. A recombinant strain was constructed by overexpressing xynB in HC6, which obtained 0.389 g/g yield of 2,3-BD from hemicellulose extracted from corn straw at 15 °C. This study proposed a promised strategy for the bioconversion of agricultural waste into 2,3-BD at low temperatures and provides a basis for future efforts in the achievement of carbon neutrality.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852422007829; http://dx.doi.org/10.1016/j.biortech.2022.127453; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132334081&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35700903; https://linkinghub.elsevier.com/retrieve/pii/S0960852422007829; https://dx.doi.org/10.1016/j.biortech.2022.127453
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know