Enhanced poly(3-hydroxybutyrateco-3-hydroxyvalerate) production from high-concentration propionate by a novel halophile Halomonas sp. YJ01: Detoxification of the 2-methylcitrate cycle
Bioresource Technology, ISSN: 0960-8524, Vol: 388, Page: 129738
2023
- 4Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As a carbon substrate, propionate can be used to synthesize poly(3-hydroxybutyrateco-3-hydroxyvalerate) [PHBV] biopolymer, but high concentrations can inhibit PHBV production. Therefore, novel PHBV producers that can utilize high propionate concentrations are needed. Here, a novel halophile, Halomonas sp. YJ01 was applied to PHBV production via a propionate-dependent pathway, and optimal culture growth conditions were determined. The maximum poly(3-hydroxybutyrate) [PHB] content and yield in the presence of glucose were 89.5 wt% and 5.7 g/L, respectively. This strain utilizes propionate and volatile fatty acids (VFAs) for PHBV accumulation. Multiple genes related to polyhydroxyalkanoate (PHA) synthesis were identified using whole-genome annotation. The PHBV yield and 3HV fraction obtained by strain YJ01 utilizing 15 g/L propionate were 0.86 g/L and 29 mol%, respectively, but in cultures with glucose-propionate, it decreased its copolymer dry weight. This indicates that propionyl-CoA was converted to pyruvate through the 2-methylcitrate cycle (2MCC), which reduced propionate detoxification for the strain.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852423011665; http://dx.doi.org/10.1016/j.biortech.2023.129738; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171634270&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37714496; https://linkinghub.elsevier.com/retrieve/pii/S0960852423011665; https://dx.doi.org/10.1016/j.biortech.2023.129738
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know