Membrane aerated biofilm reactor system driven by pure oxygen for wastewater treatment
Bioresource Technology, ISSN: 0960-8524, Vol: 393, Page: 130130
2024
- 11Citations
- 38Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Pure oxygen is proposed for wastewater treatment due to its advantages over conventional air aeration. This study investigates a Pure Oxygen-based Membrane Aerated Biofilm Reactor (PO-MABR) for the first time under various operating conditions. The PO-MABR employs a gas-permeable membrane for direct diffusion of low-pressurized pure oxygen to the biofilm, ensuring exceptional carbon and nitrogen removal. The effectiveness of PO-MABR was investigated by varying operational conditions, including temperature, carbon-to-nitrogen ratio, gas pressure, and flow rate. Results indicate superior performance, with a 97% chemical oxygen demand removal and 19% higher total nitrogen removal than Air-Ventilated MABR (A-MABR) due to thicker biofilm and unique microbial structures in PO-MABR. Also, PO-MABR demonstrated resilience to low temperatures and effectively treated both high and low-strength wastewater. The findings emphasize the efficiency of PO-MABR in wastewater treatment, advocating for its adoption due to superior carbon and nitrogen removal across diverse operational conditions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852423015584; http://dx.doi.org/10.1016/j.biortech.2023.130130; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85178623787&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38040304; https://linkinghub.elsevier.com/retrieve/pii/S0960852423015584; https://dx.doi.org/10.1016/j.biortech.2023.130130
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know