PlumX Metrics
Embed PlumX Metrics

Predicting biochar properties and pyrolysis life-cycle inventories with compositional modeling

Bioresource Technology, ISSN: 0960-8524, Vol: 399, Page: 130551
2024
  • 2
    Citations
  • 0
    Usage
  • 25
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Biochar, formed through slow pyrolysis of biomass, has garnered attention as a pathway to bind atmospheric carbon in products. However, life cycle assessment data for biomass pyrolysis have limitations in data quality, particularly for novel processes. Here, a compositional, predictive model of slow pyrolysis is developed, with a focus on CO 2 fluxes and energy products, reflecting mass-weighted cellulose, hemicellulose, and lignin pyrolysis products for a given pyrolysis temperature. This model accurately predicts biochar yields and composition within 5 % of experimental values but shows broader distributions for bio-oil and syngas (typically within 20 %). This model is demonstrated on common feedstocks to quantify biochar yield, energy, and CO 2 emissions as a function of temperature and produce key life cycle inventory flows (e.g., 0.73 kg CO2/kg poplar biochar bound carbon at 500 °C). This model can be adapted to any lignocellulosic biomass to inform development of pyrolysis processes that maximize carbon sequestration.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know