Microbial community response to temperature reduction during anaerobic treatment of long chain fatty acids-containing wastewater
Bioresource Technology, ISSN: 0960-8524, Vol: 413, Page: 131529
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Acclimating mesophilic biomass to low temperatures have been used to start-up psychrophilic anaerobic reactors, but limited microbial information is available during the acclimation. To investigate microbial responses to temperature reductions, duplicate lab-scale anaerobic digestion (AD) reactors were operated for 166 days, with the temperature being reduced from 37°C to 15°C, using synthetic long chain fatty acid (LCFA)-containing wastewater as the feedstock. The acclimated biomass at 15°C exhibited efficient removal of organic matter (total COD>75%, soluble COD>88%, and LCFA>99%). Temperature reductions lead to significant reductions in microbiome diversity. Fermentative bacteria were highly dynamic and functional redundant during temperature reductions. Smithella was the dominant syntrophic bacteria involved in LCFA degradation coupled with Methanothrix and Methanocorpusculum at 15 °C. Membrane modifications and compatible cellular solutes production were triggered by temperature reductions as microbial response to cold stress. This study provided molecular insights in microbial acclimation to low temperatures for psychrophilic AD.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852424012331; http://dx.doi.org/10.1016/j.biortech.2024.131529; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85204878249&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39321934; https://linkinghub.elsevier.com/retrieve/pii/S0960852424012331
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know