Nanoconfinement of MgO in nitrogen pre-doped biochar for enhanced phosphate adsorption: Performance and mechanism
Bioresource Technology, ISSN: 0960-8524, Vol: 414, Page: 131613
2024
- 4Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
Article Description
Advanced metal-doped biochar with superior phosphate (P) adsorption capacity plays a crucial role in combating eutrophication, depending on the rational design of the biochar structure for uniform and nanoscale dispersion of metal oxides. Herein, the nanoconfinement of magnesium oxide (MgO) was successfully attained in nitrogen pre-doped biochar (Mg/N-BC). The well-dispersed MgO was confined within nanoscale structure of Mg/N-BC, delivering P adsorption capacity of 108.41 mg g −1 and adsorption rate of 18.01 mg g -1 h −1. More importantly, its adsorption performance at equilibrium 0.5 mg P/L was 17.70 times higher. Results suggested the decrease in pore size was positively correlated with the increase of N, confirming the role of N pre-doping in structure shaping and MgO confinement. The enhanced P adsorption was attributed to the well-dispersed MgO nanoparticles within the biochar. This study introduced a facile synthesis approach for biochar-incorporated nanoscale MgO, offering a new strategy for enhanced P removal.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960852424013178; http://dx.doi.org/10.1016/j.biortech.2024.131613; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85206455791&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39393650; https://linkinghub.elsevier.com/retrieve/pii/S0960852424013178
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know