PlumX Metrics
Embed PlumX Metrics

Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques

Bioresource Technology, ISSN: 0960-8524, Vol: 418, Page: 131976
2025
  • 0
    Citations
  • 0
    Usage
  • 10
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Optimal control and process optimization of astaxanthin production from Haematococcuslacustris is directly linked to its complex cell cycle ranging from vegetative green cells to astaxanthin-rich cysts. This study developed an automated online monitoring system classifying four different cell cycle stages using a scanning microscope. Decision-tree based machine learning and deep learning convolutional neural network algorithms were developed, validated, and evaluated. SHapley Additive exPlanations was used to examine the most important system requirements for accurate image classification. The models achieved accuracies on unseen data of 92.4 and 90.9%, respectively. Furthermore, both models were applied to a photobioreactor culturing H.lacustris, effectively monitoring the transition from a green culture in the exponential growth phase to a stationary red culture. Therefore, online image analysis using artificial intelligence models has great potential for process optimization and as a data-driven decision support tool during microalgae cultivation.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know