Modern creatinine (Bio)sensing: Challenges of point-of-care platforms
Biosensors and Bioelectronics, ISSN: 0956-5663, Vol: 130, Page: 110-124
2019
- 83Citations
- 180Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations83
- Citation Indexes83
- 83
- CrossRef48
- Captures180
- Readers180
- 180
Review Description
The importance of knowing creatinine levels in the human body is related to the possible association with renal, muscular and thyroid dysfunction. Thus, the accurate detection of creatinine may indirectly provide information surrounding those functional processes, therefore contributing to the management of the health status of the individual and early diagnosis of acute diseases. The questions at this point are: to what extent is creatinine information clinically relevant?; and do modern creatinine (bio)sensing strategies fulfil the real needs of healthcare applications? The present review addresses these questions by means of a deep analysis of the creatinine sensors reported in the literature over the last five years. There is a wide range of techniques for detecting creatinine, most of them based on optical readouts (20 of the 33 papers collected in this review). However, the use of electrochemical techniques (13 of the 33 papers) is recently emerging in alignment with the search for a definitive and trustworthy creatinine detection at the point-of-care level. In this sense, biosensors (7 of the 33 papers) are being established as the most promising alternative over the years. While creatinine levels in the blood seem to provide better information about patient status, none of the reported sensors display adequate selectivity in such a complex matrix. In contrast, the analysis of other types of biological samples (e.g., saliva and urine) seems to be more viable in terms of simplicity, cross-selectivity and (bio)fouling, besides the fact that its extraction does not disturb individual's well-being. Consequently, simple tests may likely be used for the initial check of the individual in routine analysis, and then, more accurate blood detection of creatinine could be necessary to provide a more genuine diagnosis and/or support the corresponding decision-making by the physician. Herein, we provide a critical discussion of the advantages of current methods of (bio)sensing of creatinine, as well as an overview of the drawbacks that impede their definitive point-of-care establishment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0956566319300776; http://dx.doi.org/10.1016/j.bios.2019.01.048; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85060939971&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/30731344; https://linkinghub.elsevier.com/retrieve/pii/S0956566319300776; https://dx.doi.org/10.1016/j.bios.2019.01.048
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know