Enhancing sustainable food packaging design: A machine learning approach to predict ventilated corrugated paperboard strength
Biosystems Engineering, ISSN: 1537-5110, Vol: 247, Page: 26-41
2024
- 1Citations
- 14Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Sustainable Food and Agriculture Data Have Been Reported by Investigators at Michigan State University (Enhancing Sustainable Food Packaging Design: a Machine Learning Approach To Predict Ventilated Corrugated Paperboard Strength)
2024 NOV 05 (NewsRx) -- By a News Reporter-Staff News Editor at Economics Daily Report -- Current study results on Sustainability Research - Sustainable Food
Article Description
In the food packaging industry, ventilated corrugated paperboard boxes are crucial for sustainable transport of fresh products. While these boxes' ventilation holes advance air circulation, they also impact the material's compression or buckling strength. Variations in hole geometry and location affecting this strength are explored, considering the composite material, multi-layered structure. Traditional mechanical analyses, which often require simplifications, may not fully capture this complexity, leading to less accurate predictions of the paperboard's strength. To address these challenges, a machine learning (ML) approach was utilized, employing the Light Gradient Boosting Machine (LGBM) to develop a predictive model for the buckling strength of corrugated paperboard boxes with ventilation cutouts. This physics-informed ML model, trained on a compression dataset resulting from experimental tests for plates with a single cutout in three shapes and Finite Element Method (FEM) simulations for plates with various patterns of circular cutouts, provides highly accurate estimates of the plates' buckling strength. It achieved 91.7% accuracy on experimental data and 94.68% on FEM simulation data, showcasing its reliability. A new tool for predicting the buckling strength of corrugated paperboard is provided by this research, along with insights that can inform the design of more sustainable packaging solutions. Furthermore, the methodology and findings have broader applications, potentially benefiting sectors like aerospace and construction, where similar structural materials are used.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know