Application of nanomaterials in dark or light-assisted fermentation for enhanced biohydrogen production: A mini-review
Bioresource Technology Reports, ISSN: 2589-014X, Vol: 21, Page: 101295
2023
- 18Citations
- 88Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Materials Science in Fermentation Processes
Humans have used fermentation to produce wine, bread, and other related products for centuries. An article published in Microorganisms describes fermentation as the conversion of
Article Description
Biohydrogen is regarded as the most promising new generation of green energy. However, the low yield and high cost of biohydrogen restrict its production on a large scale. Nanomaterials have demonstrated outstanding potential for improving biohydrogen production due to their unique photoelectrochemical properties. Some metal nanoparticles are used to promote biohydrogen production in dark fermentation (biohydrogen increased by 5.4–230 %). The state-of-the-art involves using metal or nonmetal photosensitizers to build extracellular or intracellular photo-biohybrid systems with microorganisms, which can be driven by light to efficiently produce biohydrogen (increased by 1.29–8.6 times). This review has summarized in detail the application status and working principle of metal nanoparticles in dark fermentation, the light-assisted biohydrogen production performance, and the mechanism of the extracellular and intracellular photo-biohybrid system. Next, the toxicity and biocompatibility modifications of nanoparticles were discussed. Finally, we proposed the key issues that should be prioritized in the long-term development of biohydrogen.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2589014X22003528; http://dx.doi.org/10.1016/j.biteb.2022.101295; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85143049180&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2589014X22003528; https://dx.doi.org/10.1016/j.biteb.2022.101295
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know