PlumX Metrics
Embed PlumX Metrics

Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents

Bioorganic & Medicinal Chemistry, ISSN: 0968-0896, Vol: 23, Issue: 9, Page: 2221-2240
2015
  • 32
    Citations
  • 0
    Usage
  • 53
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Falcipain-2 is a papain family cysteine protease and an emerging antimalarial drug target. A pseudo-tripeptide scaffold I was designed using in silico screening tools and the three dimensional structures of falcipain-2, falcipain-3, and papain. This scaffold was investigated at four positions, T 1, T 2, T 3, and T 3 ′, with various targeted substitutions to understand the structure–activity relationships. Inhibitor synthesis was accomplished by first obtaining the appropriate dipeptide precursors with common structural components. The pyrrolidine moiety introduced interesting rotamers in a number of synthesized molecules, which was confirmed using high-temperature 1 H NMR spectroscopy. Among the synthesized compounds, 61, 62, and 66 inhibited falcipain-2 activity with inhibition constants ( K i ) of 1.8 ± 1.1, 0.2 ± 0.1 and 7.0 ± 2.3 μM, respectively. A group of molecules with a pyrrolidine moiety at the T 2 position ( 68, 70, 71, 72, and 73 ) also potently inhibited falcipain-2 activity ( K i = 0.4 ± 0.1, 2.5 ± 0.5, 3.3 ± 1.1, 7.5 ± 1.9, and 4.6 ± 0.7 μM, respectively). Overall, compound 74 exhibited potent anti-parasitic activity (IC 50 = 0.9 ± 0.1 μM), corresponding with its inhibitory activity against falcipain-2, with a K i of 1.1 ± 0.1 μM. Compounds 62 and 67 inhibited the growth of the drug resistant parasite Dd2 with better efficacy, and compound 74 exhibited a 7- to 12-fold higher potency against Dd2 and MCamp isolates, than the laboratory strain (3D7). These data suggest that this novel series of compounds should be further investigated as potential antimalarial agents.

Bibliographic Details

Chakka, Sai Kumar; Kalamuddin, Mohammad; Sundararaman, Srividhya; Wei, Lianhu; Mundra, Sourabh; Mahesh, Radhakrishnan; Malhotra, Pawan; Mohmmed, Asif; Kotra, Lakshmi P

Elsevier BV

Biochemistry, Genetics and Molecular Biology; Pharmacology, Toxicology and Pharmaceutics; Chemistry

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know