PlumX Metrics
Embed PlumX Metrics

Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold

Bone, ISSN: 8756-3282, Vol: 51, Issue: 3, Page: 313-323
2012
  • 29
    Citations
  • 0
    Usage
  • 48
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Autologous adipose-derived stromal cells (ASCs) are an obvious source of osteogenic cells and can be easily isolated from adipose tissue. We evaluated the potential of ASCs seeded onto a scaffold to heal tibial defects. Autologous ASCs were obtained from adipose tissue by collagenase digestion. The cells were seeded in three-dimensional poly(lactic)-glycolic acid (PLGA) scaffolds and cultured in osteogenic medium for four weeks. Evidence of osteogenesis was assessed by von Kossa staining in three-dimensional cultures following osteogenic induction. The critical size tibial defects (10 mm) were created using a rat model. Defects were either left empty (sham group), treated with a PLGA scaffold alone (PLGA group), or a PLGA/ASC composite (PLGA/ASC group). Using radiologic and histologic analyses, we assessed total bone volume and vascular density. Total RNA was prepared from regenerated bone and analyzed for osteogenic marker gene expression. In three-dimensional cultures, the PLGA/ASC composite showed multiple calcified extracellular matrix nodules on von Kossa staining after four weeks of differentiation. Near complete healing was observed between the PLGA/ASC engrafted tibial defects on plain radiographs and micro-CT findings. Total bone volume and mechanical strength were significantly higher in the PLGA/ASC group compared to the sham and PLGA groups. Histologic analysis revealed increased new bone formation along capillaries in the PLGA/ASC group. Real-time RT-PCR analysis revealed a significant increase in the expression of osteogenic genes in the PLGA/ASC group. The results showed that the repair of tibial defects was accelerated by implantation of autologous ASCs seeded onto a PLGA scaffold. Therefore, PLGA/ASC is a promising new cell-based therapy for healing critical size tibial defects.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know