Coupling Active Hair Bundle Mechanics, Fast Adaptation, and Somatic Motility in a Cochlear Model
Biophysical Journal, ISSN: 0006-3495, Vol: 100, Issue: 11, Page: 2576-2585
2011
- 40Citations
- 52Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations40
- Citation Indexes40
- 40
- CrossRef35
- Captures52
- Readers52
- 52
Article Description
One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006349511005273; http://dx.doi.org/10.1016/j.bpj.2011.04.049; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79960330221&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/21641302; https://linkinghub.elsevier.com/retrieve/pii/S0006349511005273; http://www.cell.com/biophysj/abstract/S0006-3495(11)00527-3
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know