Length of mucin-like domains enhances cell-Ebola virus adhesion by increasing binding probability
Biophysical Journal, ISSN: 0006-3495, Vol: 120, Issue: 5, Page: 781-790
2021
- 1Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Ebola virus (EBOV) hijacks normal physiological processes by apoptotic mimicry to be taken up by the cell it infects. The initial adhesion of the virus to the cell is based on the interaction between T cell immunoglobulin and mucin domain protein, TIM, on the cell surface and phosphatidylserine (PS) on the viral outer surface. Therefore, it is important to understand the interaction between EBOV and PS and TIM, with selective blocking of the interaction as a potential therapy. Recent experimental studies have shown that for TIM-dependent EBOV entry, a mucin-like domain with a length of at least 120 amino acids is required, possibly because of the increase of area of the PS-coated surface sampled. We examine this hypothesis by modeling the process of TIM-PS adhesion using a coarse-grained molecular model. We find that the strength of individual bound PS-TIM pairs is essentially independent of TIM length. TIMs with longer mucin-like domains collectively have higher average binding strengths because of an increase in the probability of binding between EBOV and TIM proteins. Similarly, we find that for larger persistence length (less flexible), the average binding force decreases, again because of a reduction in the probability of binding.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006349521000837; http://dx.doi.org/10.1016/j.bpj.2021.01.025; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100892470&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33539790; https://linkinghub.elsevier.com/retrieve/pii/S0006349521000837; https://dx.doi.org/10.1016/j.bpj.2021.01.025
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know