Diagnosing schizophrenia using deep learning: Novel interpretation approaches and multi-site validation
Brain Research, ISSN: 0006-8993, Vol: 1833, Page: 148876
2024
- 4Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Schizophrenia is a profound and enduring mental disorder that imposes significant negative impacts on individuals, their families, and society at large. The development of more accurate and objective diagnostic tools for schizophrenia can be expedited through the employment of deep learning (DL), that excels at deciphering complex hierarchical non-linear patterns. However, the limited interpretability of deep learning has eroded confidence in the model and restricted its clinical utility. At the same time, if the data source is only derived from a single center, the model's generalizability is difficult to test. To enhance the model's reliability and applicability, leave-one-center-out validation with a large and diverse sample from multiple centers is crucial. In this study, we utilized Nine different global centers to train and test the 3D Resnet model's generalizability, resulting in an 82% classification performance (area under the curve) on all datasets sourced from different countries, employing a leave-one-center-out-validation approach. Per our approximation of the feature significance of each region on the atlas, we identified marked differences in the thalamus, pallidum, and inferior frontal gyrus between individuals with schizophrenia and healthy controls, lending credence to prior research findings. At the same time, in order to translate the model's output into clinically applicable insights, the SHapley Additive exPlanations (SHAP) permutation explainer method with an anatomical atlas have been refined, thereby offering precise neuroanatomical and functional interpretations of different brain regions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006899324001306; http://dx.doi.org/10.1016/j.brainres.2024.148876; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189110107&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38513996; https://linkinghub.elsevier.com/retrieve/pii/S0006899324001306; https://dx.doi.org/10.1016/j.brainres.2024.148876
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know