Research on the application of the Sleep EEG Net model based on domain adaptation transfer in the detection of driving fatigue
Biomedical Signal Processing and Control, ISSN: 1746-8094, Vol: 90, Page: 105832
2024
- 6Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fatigue detection in driving faces challenges stemming from data scarcity and difficulty in data acquisition, which poses a significant challenge to traditional fatigue detection methods. To address this issue, this study introduces a Sleep EEG Net model based on domain adaptation transfer learning. This model was pre-trained using the publicly available Sleep-EDF dataset, and domain adaptation transfer training techniques were employed to train the feature extractor of the pre-trained model, enabling cross-domain knowledge transfer. As a result, the model has been successfully applied to the task of fatigue detection in driving with only a limited amount of fatigue driving data. Experimental results demonstrate that this approach achieves a recognition accuracy of 91.5% in fatigue detection tasks. Furthermore, the model exhibits strong generalization capabilities and robustness, achieving high recognition accuracy in both simulated and real driving environments, thereby validating its effectiveness in practical applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S174680942301265X; http://dx.doi.org/10.1016/j.bspc.2023.105832; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85179012787&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S174680942301265X; https://dx.doi.org/10.1016/j.bspc.2023.105832
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know