Multifunctional robot based on multimodal brain-machine interface
Biomedical Signal Processing and Control, ISSN: 1746-8094, Vol: 91, Page: 106063
2024
- 2Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To address the issues of low control accuracy, insufficient command quantity, and limited machine functionality in brain-machine interfaces (BMIs), we propose a multifunctional robot control system based on a multimodal BMI that fuses three different modalities of signals: SSVEP, EOG, and gyroscope. The system enables control of the robot to perform ten actions, including moving forward, turning left, turning right, stopping, gripping, lifting and lowering the left arm, clockwise and counterclockwise rotation of the left arm elbow and searching and grabbing the ball. Additionally, a new SSVEP paradigm with a two-level menu is designed to allow subjects to switch between different control menus by double blinking, providing sufficient commands with fewer stimulation blocks. In the SSVEP classification experiment, we propose a CNN-BiLSTM network based on the attention module (ACB-Net), which can make the network automatically weight according to the importance of the EEG signals of different channels, resulting in better feature extraction. To demonstrate the superiority of our model, we conducted classification experiments on a public dataset and self-collected dataset with six other SSVEP classification methods, and our model achieved the highest accuracy. In the online experiment, all 16 subjects completed complex tasks, with an average accuracy rate of 93.78% and an average ITR of 93.75 bit/min. Furthermore, we enhanced the robot's functionality by adding visual capabilities, making the control more intelligent. Overall, our proposed system demonstrates precise control over the Nao robot and holds significant potential for applications in both the medical and robotics control domains.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1746809424001216; http://dx.doi.org/10.1016/j.bspc.2024.106063; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184764242&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1746809424001216; https://dx.doi.org/10.1016/j.bspc.2024.106063
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know