A novel circadian daylight metric for building design and evaluation
Building and Environment, ISSN: 0360-1323, Vol: 113, Page: 22-38
2017
- 105Citations
- 294Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper extends the applicability of emerging frameworks for evaluating the non-visual effects of light through the development of a novel area-based daylighting metric addressing goals of human circadian stimulus and entrainment in buildings. Procedures using annual, climate-based daylight modeling of eye-level light exposures are developed to analyze and map indoor environments in regard to spatial and seasonal changes in the availability of a circadian-effective daylight stimulus. Because the biological effects of light exposure are not instantaneous, a novel approach is developed to assess the duration of an effective stimulus on a daily basis, as well as the frequency an effective stimulus is present over the course of a year. Results can be used to identify and visually examine building zones where long-term occupancy may lead to disruption of the circadian system in the absence of supplemental electrical lighting capable of effective circadian stimulus. The metric and visualization techniques are implemented in a parametric, simulation-based workflow utilizing publicly available software tools. The workflow can be used to assess and differentiate the performance of various daylighting strategies during the design phases of a project, or to examine existing spaces. The applicability of the workflow is demonstrated using two example models: a portable school classroom, and a generic open-plan commercial office floor plate.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360132316304498; http://dx.doi.org/10.1016/j.buildenv.2016.11.025; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85006728584&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360132316304498; https://dx.doi.org/10.1016/j.buildenv.2016.11.025
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know