Brownian motion, quantum corrections and a generalization of the Hermite polynomials
Journal of Computational and Applied Mathematics, ISSN: 0377-0427, Vol: 233, Issue: 6, Page: 1453-1461
2010
- 6Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The nonequilibrium evolution of a Brownian particle, in the presence of a “heat bath” at thermal equilibrium (without imposing any friction mechanism from the outset), is considered. Using a suitable family of orthogonal polynomials, moments of the nonequilibrium probability distribution for the Brownian particle are introduced, which fulfill a recurrence relation. We review the case of classical Brownian motion, in which the orthogonal polynomials are the Hermite ones and the recurrence relation is a three-term one. After having performed a long-time approximation in the recurrence relation, the approximate nonequilibrium theory yields irreversible evolution of the Brownian particle towards thermal equilibrium with the “heat bath”. For quantum Brownian motion, which is the main subject of the present work, we restrict ourselves to include the first quantum correction: this leads us to introduce a new family of orthogonal polynomials which generalize the Hermite ones. Some general properties of the new family are established. The recurrence relation for the new moments of the nonequilibrium distribution, including the first quantum correction, turns out to be also a three-term one, which justifies the new family of polynomials. A long-time approximation on the new three-term recurrence relation describes irreversible evolution towards equilibrium for the new moment of lowest order. The standard Smoluchowski equations for the lowest order moments are recovered consistently, both classically and quantum-mechanically.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0377042709001472; http://dx.doi.org/10.1016/j.cam.2009.02.061; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80051470241&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0377042709001472; https://dx.doi.org/10.1016/j.cam.2009.02.061
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know