Noncoding RNAs in the crosstalk between multiple myeloma cells and bone marrow microenvironment
Cancer Letters, ISSN: 0304-3835, Vol: 556, Page: 216081
2023
- 4Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multiple myeloma (MM) is the second most common hematological malignancy; however, it remains incurable, and the underlying pathogenesis and mechanisms of drug resistance remain unclear. It is widely recognized that the bone marrow microenvironment plays a crucial role in regulating the immune response, inducing drug resistance, and promoting tumor proliferation and invasion in MM, and thus serves as a potential therapeutic target. Among the various signaling loops between myeloma cells and components of the microenvironment, noncoding RNAs are emerging as crucial regulators of intercellular communication within the microenvironment. Noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and PIWI-interacting RNAs, have been associated with numerous biological processes involved in myeloma cell growth, survival, migration, invasion, and drug resistance. This review summarizes recent advances in the regulatory mechanisms of noncoding RNAs involved in the interaction between the MM bone marrow microenvironment and discusses the therapeutic potential of noncoding RNAs in MM.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304383523000320; http://dx.doi.org/10.1016/j.canlet.2023.216081; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147421320&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36739065; https://linkinghub.elsevier.com/retrieve/pii/S0304383523000320; https://dx.doi.org/10.1016/j.canlet.2023.216081
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know