A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes
Carbon, ISSN: 0008-6223, Vol: 48, Issue: 14, Page: 4100-4108
2010
- 57Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The buckling behavior of defective single-walled carbon nanotubes (CNTs) under torsion is investigated by using molecular dynamics simulations. Various kinds of defects including vacancy defects (monovacancy, bivacancies and line) and topological defects such as Stone–Thrower–Wales are considered. The effect of initial defects on the torsional properties is closely examined. The simulation results show that the torsional capacity is strongly dependent of the type of defects, chirality and temperature. The reduction in the torsional capacity is greater for CNTs with vacancy defects than CNTs with topological defects. Armchair CNTs have higher shear modulus and critical torques and are less sensitive to the presence of defects when compared to their zigzag counterparts. Higher temperatures trigger bond reconstructions in defective CNTs and bring relief to the negative effects of the defects, thereby improving the torsional capacities of the defective CNTs. Thus, the deterioration of the torsional capacity induced by defects can be mitigated through thermal treatment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0008622310005117; http://dx.doi.org/10.1016/j.carbon.2010.07.018; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77956268429&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0008622310005117; https://dx.doi.org/10.1016/j.carbon.2010.07.018
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know