Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity
Carbon, ISSN: 0008-6223, Vol: 66, Page: 547-559
2014
- 84Citations
- 48Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hierarchically porous carbon monoliths (HPCMs) with both ordered hexagonal mesoporosity and three-dimensionally connected macroporosity were synthesized via a simple and time-saving hydrothermal process followed by a nanocasting pathway. These monoliths have high macropore volumes and specific surface areas, strong hydrophobicity, low densities and regular shapes. Importantly, these HPCMs showed excellent performance in cleaning/recycling spilled oils or organic solvents with high adsorption capacity, rate, stability, and reusability, and in adsorbing bilirubin with high adsorption capacity, blood compatibility and durability in plasma as well. The adsorption of oil was based on the dispersion interaction between gasoline molecules and the carbon basal planes of HPCMs, while the isotherm of bilirubin adsorption on the optimized HPCMs and the corresponding kinetic data were found better fitted by Langmuir adsorption model and pseudo-second-order kinetic model, respectively.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0008622313008919; http://dx.doi.org/10.1016/j.carbon.2013.09.037; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84886792789&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0008622313008919; https://dx.doi.org/10.1016/j.carbon.2013.09.037
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know