On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned MWCNT and randomly oriented CNT epoxy composites
Carbon, ISSN: 0008-6223, Vol: 91, Page: 275-290
2015
- 94Citations
- 92Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The effect of CNT orientation on electrical and mechanical properties is presented on the example of an ultra-high filler loaded multi-walled carbon nanotube (68 wt.% MWCNTs) epoxy-based nanocomposite. A novel manufacturing method based on hot-press infiltration through a semi-permeable membrane allows to obtain both, nanocomposites with aligned and randomly oriented CNTs (APNCs and RPNCs) over a broad filler loading range of ≈10–68 wt.%. APNCs are based on low-defected, mm-long aligned MWCNT arrays grown in chemical vapour deposition (CVD) process. Electrical conductivity and mechanical properties were measured parallel and perpendicular to the direction of CNTs. RPNCs are based on both, aligned mm-long MWCNTs and randomly oriented commercial μm-long and entangled MWCNTs (Baytube C150P, and exemplarily Arkema Graphistrength C100). The piezoresistive strain sensing capability of these high-wt.% APNCs and RPNCs had been investigated towards the influence of CNT orientations. For the highest CNT fraction of 68 wt.% of unidirectional aligned CNTs a Young’s modulus of E || ≈ 36 GPa and maximum electrical conductivity of σ || ≈ 37·10 4 S/m were achieved.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0008622315003760; http://dx.doi.org/10.1016/j.carbon.2015.04.085; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84930211828&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0008622315003760; https://dx.doi.org/10.1016/j.carbon.2015.04.085
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know