Multi-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheets
Carbon, ISSN: 0008-6223, Vol: 148, Page: 487-495
2019
- 56Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multi-responsive actuators have recently aroused intensive research for the requirements of being used in various environments. However, their actuation performances are generally lower than their single responsive counterparts because of the restriction of material selection and complicated structural design. Here, for the first time, a multi-responsive actuator that can respond to four types of stimuli including electricity, near infrared light, humidity, and organic vapors was designed by attaching superaligned carbon nanotubes sheets and coating an ink layer on the both sides of the PET film. The multi-responsive actuator shows fast and reversible actuation with high displacement-to-length ratio of 0.79 under electrical stimulus, and large bending angle of 212 ο in 0.55 s at a bending speed of 646 ο /s under near infrared light irradiation. The actuator also shows fast response exposing to moisture and volatile organic vapors. The actuator shows a large bending angle within ∼0.1 s when exposed to different organic solvents and recovered its initial shape when the solvent was removed. These performances are in the same level of the record values of the thermal-based bimorph actuators. We demonstrated this actuator as a smart electric-control frequency switch at relatively high on/off frequency up to 17.5 Hz.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0008622319303379; http://dx.doi.org/10.1016/j.carbon.2019.04.014; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85064522867&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0008622319303379; https://dx.doi.org/10.1016/j.carbon.2019.04.014
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know