Injectable oxidized alginate/carboxylmethyl chitosan hydrogels functionalized with nanoparticles for wound repair
Carbohydrate Polymers, ISSN: 0144-8617, Vol: 293, Page: 119733
2022
- 48Citations
- 25Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations48
- Citation Indexes48
- 48
- CrossRef32
- Captures25
- Readers25
- 25
Article Description
Owing to its simple properties, the application of injectable hydrogel in wound repair is limited. Therefore, the multi-functionalization of injectable hydrogel to improve the therapeutic effect is imperative. Here, keratin nanoparticles (Ker NPs) with facilitating epithelization capability and nanosized-EGCG covered with Ag nanoparticles (AE NPs) with radicals scavenging capability were used to functionalize injectable oxidized alginate/carboxylmethyl chitosan hydrogel (KA hydrogel). The radical scavenging experiments proved the anti-oxidative capacity of AE NPs. Rheological test exhibited that the gelation time and storage modulus of KA hydrogel were about 216 s and 403 Pa. Additionally, wound healing experiment in vivo showed that KA hydrogel could accelerated wound healing, especially in the early stage, and improved the thickness of renascent epidermis by 21 %. In this work, Ker NPs and AE NPs functionalization endowed injectable hydrogels with the capabilities of scavenging radicals and facilitating epithelization, which is promising for the applications in wound repair.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0144861722006385; http://dx.doi.org/10.1016/j.carbpol.2022.119733; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132217425&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35798428; https://linkinghub.elsevier.com/retrieve/pii/S0144861722006385; https://dx.doi.org/10.1016/j.carbpol.2022.119733
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know