A scientometric analysis and recent advances of emerging chitosan-based biomaterials as potential catalyst for biodiesel production: A review
Carbohydrate Polymers, ISSN: 0144-8617, Vol: 325, Page: 121567
2024
- 5Citations
- 34Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Chitosan is a widely available polymer with a reasonably high abundance, as well as a sustainable, biodegradable, and biocompatible material with different functional groups that are used in a wide range of operations. Chitosan is frequently employed in widespread applications such as environmental remediation, adsorption, catalysts, and drug formulation. The goal of this review is to discuss the potential applications of chitosan and its chemically modified solids as a catalyst in biodiesel production. The existing manuscripts are integrated based on the nature of materials used as chitosan and its modifications. A short overview of chitosan's structural characteristics, properties, and some ideal methods to be considered in catalysis activities are addressed. This article includes an analysis of a chitosan-based scientometric conducted between 1975 and 2023 using VOS viewer 1.6.19. To identify developments and technological advances in chitosan research, the significant scientometric features of yearly publication results, documents country network, co-authorship network, documents funding sponsor, documents institution network, and documents category in domain analysis were examined. This review covers a variety of organic transformations and their effects, including chitosan reactions against acids, bases, metals, metal oxides, organic compounds, lipases, and Knoevenagel condensation. The catalytic capabilities of chitosan and its modified structures for producing biodiesel through transesterification reactions are explored in depth.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0144861723010329; http://dx.doi.org/10.1016/j.carbpol.2023.121567; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177787400&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38008474; https://linkinghub.elsevier.com/retrieve/pii/S0144861723010329; https://dx.doi.org/10.1016/j.carbpol.2023.121567
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know