High dielectric transparent polymer composite with well-organized carboxymethyl cellulose microfibers in silicon elastomer fabricated under direct current electric field
Carbohydrate Polymers, ISSN: 0144-8617, Vol: 329, Page: 121803
2024
- 2Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Captures5
- Readers5
Article Description
The combination of transparency, high dielectric permittivity, biocompatibility and flexibility is highly desired in the embedded capacitors. Herein, we show that assembling biodegradable sodium carboxymethyl cellulose (CMC) microfibers in biocompatible silicon elastomer (PDMS) under direct current (DC) electric field enables the production of high dielectric constant composite film with above desired properties. This process leads to the formation of columns of CMC microfibers spanning across the thickness direction, thus generating microfiber depleted regions in between fibers and polymer matrix. The as-prepared composite film with CMC (15 wt%) aligned exhibits a remarkable and an almost sevenfold higher dielectric permittivity as compared to that of the film with CMC randomly dispersed (72 vs 11.4, at 100 Hz). This high CMC loading does not compromise the flexibility and optical transmittance. Interestingly, the compression modulus along the thickness direction increases by >20 times from 16.4 MPa (CMC unaligned) to 339.9 MPa (CMC aligned). We demonstrate a facile strategy of fabricating high dielectric materials combining transparency, biocompatibility, flexibility and compression resistant, making the dielectric materials more versatile. This work shows that biomass derived CMC is a promising filler for high dielectric constant polymer composites benefiting from electric field driven construction of ordered micromorphology.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0144861724000298; http://dx.doi.org/10.1016/j.carbpol.2024.121803; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85182596604&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38286533; https://linkinghub.elsevier.com/retrieve/pii/S0144861724000298; https://dx.doi.org/10.1016/j.carbpol.2024.121803
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know