Potential applications of encapsulated yeasts especially within alginate and chitosan as smart bioreactors and intelligent micro-machines
Carbohydrate Polymer Technologies and Applications, ISSN: 2666-8939, Vol: 7, Page: 100513
2024
- 6Citations
- 39Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Although several fundamental applications have been reported for yeast cells and their components as functional vehicles or promising structural ingredients in encapsulation of bioactive compounds; meanwhile, potential applications of encapsulated yeasts (EYs) have been less reviewed. Recently, EYs have received increasing attention for industrial applications in different areas of biotechnology such as bioremediation of toxins or heavy metals, bio-filtration, and biocatalyst or bioethanol production. Yeast cells are mostly encapsulated within alginate, chitosan, and some other polysaccharide-based coating materials. These platforms enable us to enhance survivability of probiotic yeasts in food, feed and gastrointestinal transit, as well as to improve their mucoadhesion and targeted delivery. Furthermore, increased thermo-tolerance and stability of yeasts towards high concentrations of alcohols, as well as their improved yield during industrial processing of different fermented foods have been revealed using encapsulation strategies. These cost-effective and scalable matrices have also several innovative potentials to construct composite of living cells and engineered polymers or cell-in-shell hybrids in order to modify techno-functional and sensory properties of the product, as well as cell immobilization, cell-surface engineering and programmed intelligent coating formation and/or degradation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2666893924000938; http://dx.doi.org/10.1016/j.carpta.2024.100513; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85193243813&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2666893924000938; https://dx.doi.org/10.1016/j.carpta.2024.100513
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know