Structure of water layers on hydrogen-covered Pt electrodes
Catalysis Today, ISSN: 0920-5861, Vol: 202, Issue: 1, Page: 183-190
2013
- 85Citations
- 102Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The structure of water layers above hydrogen-covered Pt(1 1 1) surfaces at room temperature has been studied by ab initio molecular dynamics simulations based on periodic density functional theory calculations. Fully hydrogen-covered Pt(1 1 1) with additionally either a hydrogen vacancy or another hydrogen adatom have been considered. The resulting structures have been analyzed in detail as a function of the hydrogen coverage. In particular, the thermal disorder in the water layer is examined in terms of deviations from the ice lattice, orientational inhomogeneity within a water bilayer, as well as the onset of proton transfer. On hydrogen-covered Pt(1 1 1), the water layer is located at a much larger distance from the Pt atoms than on the pure metal surfaces. Surprisingly, the more weakly bound water layer on the hydrogen-covered Pt(1 1 1) electrode exhibits a greater order than the water layer on clean Pt(1 1 1) which is attributed to the stronger water–water interaction above hydrogen-covered Pt(1 1 1). The relevance of our findings for the understanding of electrochemical electrode/water interfaces is discussed.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0920586112004178; http://dx.doi.org/10.1016/j.cattod.2012.06.001; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84870804247&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0920586112004178; https://dx.doi.org/10.1016/j.cattod.2012.06.001
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know