Exposure to lutein-loaded nanoparticles attenuates Parkinson's model-induced damage in Drosophila melanogaster : Restoration of dopaminergic and cholinergic system and oxidative stress indicators
Chemico-Biological Interactions, ISSN: 0009-2797, Vol: 340, Page: 109431
2021
- 29Citations
- 68Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations29
- Citation Indexes29
- 29
- CrossRef16
- Captures68
- Readers68
- 68
Article Description
Parkinson's is a neurodegenerative disease, characterized by the loss of dopaminergic neurons, cholinergic alterations and oxidative damages. Lutein is widely known by its antioxidants properties. In the present study, we investigated whether lutein-loaded nanoparticles protects against locomotor damage and neurotoxicity induced by Parkinson's disease model in Drosophila melanogaster, as well as possible mechanisms of action. First, the nanoparticles were characterized by physicochemical methods, demonstrating that water affinity was improved by the encapsulation of lutein into the polymeric encapsulant matrix. The fruit flies of 1–4 days old were divided into four groups and exposed to a standard diet (control), a diet containing either rotenone (500 μM), lutein-loaded nanoparticles (6 μM) or rotenone (500 μM) and lutein-loaded nanoparticles (6 μM) for 7 days. The survival percentage was assessed, the flies were submitted to negative geotaxis, open field tasks and the determination of dopamine levels, tyrosine hydroxylase (TH) and acetylcholinesterase activities and oxidative stress indicators (superoxide dismutase, catalase, thiobarbituric acid reactive substances and glutathione S-transferase) were carried out. The exposure to lutein-loaded nanoparticles protected against locomotor damage and the decrease survival rate induced by rotenone, besides, it restored the dopamine levels, TH and acetylcholinesterase activities and oxidative stress indicators. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for rotenone-induced damage, and suggest the involvement of dopaminergic and cholinergic system and oxidative stress.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0009279721000673; http://dx.doi.org/10.1016/j.cbi.2021.109431; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85103407992&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33716020; https://linkinghub.elsevier.com/retrieve/pii/S0009279721000673; https://dx.doi.org/10.1016/j.cbi.2021.109431
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know